pydantic_ai.result
ResultDataT_inv
module-attribute
ResultDataT_inv = TypeVar('ResultDataT_inv', default=str)
An invariant type variable for the result data of a model.
We need to use an invariant typevar for ResultValidator
and ResultValidatorFunc
because the result data type is used
in both the input and output of a ResultValidatorFunc
. This can theoretically lead to some issues assuming that types
possessing ResultValidator's are covariant in the result data type, but in practice this is rarely an issue, and
changing it would have negative consequences for the ergonomics of the library.
At some point, it may make sense to change the input to ResultValidatorFunc to be Any
or object
as doing that would
resolve these potential variance issues.
ResultDataT
module-attribute
ResultDataT = TypeVar(
"ResultDataT", default=str, covariant=True
)
Covariant type variable for the result data type of a run.
ResultValidatorFunc
module-attribute
ResultValidatorFunc = Union[
Callable[
[RunContext[AgentDepsT], ResultDataT_inv],
ResultDataT_inv,
],
Callable[
[RunContext[AgentDepsT], ResultDataT_inv],
Awaitable[ResultDataT_inv],
],
Callable[[ResultDataT_inv], ResultDataT_inv],
Callable[[ResultDataT_inv], Awaitable[ResultDataT_inv]],
]
A function that always takes and returns the same type of data (which is the result type of an agent run), and:
- may or may not take
RunContext
as a first argument - may or may not be async
Usage ResultValidatorFunc[AgentDeps, T]
.
RunResult
dataclass
Bases: _BaseRunResult[ResultDataT]
Result of a non-streamed run.
Source code in pydantic_ai_slim/pydantic_ai/result.py
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
|
all_messages_json
Return all messages from all_messages
as JSON bytes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
result_tool_return_content
|
str | None
|
The return content of the tool call to set in the last message.
This provides a convenient way to modify the content of the result tool call if you want to continue
the conversation and want to set the response to the result tool call. If |
None
|
Returns:
Type | Description |
---|---|
bytes
|
JSON bytes representing the messages. |
Source code in pydantic_ai_slim/pydantic_ai/result.py
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
|
new_messages
new_messages(
*, result_tool_return_content: str | None = None
) -> list[ModelMessage]
Return new messages associated with this run.
Messages from older runs are excluded.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
result_tool_return_content
|
str | None
|
The return content of the tool call to set in the last message.
This provides a convenient way to modify the content of the result tool call if you want to continue
the conversation and want to set the response to the result tool call. If |
None
|
Returns:
Type | Description |
---|---|
list[ModelMessage]
|
List of new messages. |
Source code in pydantic_ai_slim/pydantic_ai/result.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
|
new_messages_json
Return new messages from new_messages
as JSON bytes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
result_tool_return_content
|
str | None
|
The return content of the tool call to set in the last message.
This provides a convenient way to modify the content of the result tool call if you want to continue
the conversation and want to set the response to the result tool call. If |
None
|
Returns:
Type | Description |
---|---|
bytes
|
JSON bytes representing the new messages. |
Source code in pydantic_ai_slim/pydantic_ai/result.py
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
|
usage
usage() -> Usage
Return the usage of the whole run.
Source code in pydantic_ai_slim/pydantic_ai/result.py
144 145 146 |
|
all_messages
all_messages(
*, result_tool_return_content: str | None = None
) -> list[ModelMessage]
Return the history of _messages.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
result_tool_return_content
|
str | None
|
The return content of the tool call to set in the last message.
This provides a convenient way to modify the content of the result tool call if you want to continue
the conversation and want to set the response to the result tool call. If |
None
|
Returns:
Type | Description |
---|---|
list[ModelMessage]
|
List of messages. |
Source code in pydantic_ai_slim/pydantic_ai/result.py
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
|
StreamedRunResult
dataclass
Bases: _BaseRunResult[ResultDataT]
, Generic[AgentDepsT, ResultDataT]
Result of a streamed run that returns structured data via a tool call.
Source code in pydantic_ai_slim/pydantic_ai/result.py
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
|
all_messages
all_messages(
*, result_tool_return_content: str | None = None
) -> list[ModelMessage]
Return the history of _messages.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
result_tool_return_content
|
str | None
|
The return content of the tool call to set in the last message.
This provides a convenient way to modify the content of the result tool call if you want to continue
the conversation and want to set the response to the result tool call. If |
None
|
Returns:
Type | Description |
---|---|
list[ModelMessage]
|
List of messages. |
Source code in pydantic_ai_slim/pydantic_ai/result.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
|
all_messages_json
Return all messages from all_messages
as JSON bytes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
result_tool_return_content
|
str | None
|
The return content of the tool call to set in the last message.
This provides a convenient way to modify the content of the result tool call if you want to continue
the conversation and want to set the response to the result tool call. If |
None
|
Returns:
Type | Description |
---|---|
bytes
|
JSON bytes representing the messages. |
Source code in pydantic_ai_slim/pydantic_ai/result.py
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
|
new_messages
new_messages(
*, result_tool_return_content: str | None = None
) -> list[ModelMessage]
Return new messages associated with this run.
Messages from older runs are excluded.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
result_tool_return_content
|
str | None
|
The return content of the tool call to set in the last message.
This provides a convenient way to modify the content of the result tool call if you want to continue
the conversation and want to set the response to the result tool call. If |
None
|
Returns:
Type | Description |
---|---|
list[ModelMessage]
|
List of new messages. |
Source code in pydantic_ai_slim/pydantic_ai/result.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
|
new_messages_json
Return new messages from new_messages
as JSON bytes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
result_tool_return_content
|
str | None
|
The return content of the tool call to set in the last message.
This provides a convenient way to modify the content of the result tool call if you want to continue
the conversation and want to set the response to the result tool call. If |
None
|
Returns:
Type | Description |
---|---|
bytes
|
JSON bytes representing the new messages. |
Source code in pydantic_ai_slim/pydantic_ai/result.py
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
|
is_complete
class-attribute
instance-attribute
Whether the stream has all been received.
This is set to True
when one of
stream
,
stream_text
,
stream_structured
or
get_data
completes.
stream
async
stream(
*, debounce_by: float | None = 0.1
) -> AsyncIterator[ResultDataT]
Stream the response as an async iterable.
The pydantic validator for structured data will be called in partial mode on each iteration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
debounce_by
|
float | None
|
by how much (if at all) to debounce/group the response chunks by. |
0.1
|
Returns:
Type | Description |
---|---|
AsyncIterator[ResultDataT]
|
An async iterable of the response data. |
Source code in pydantic_ai_slim/pydantic_ai/result.py
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
|
stream_text
async
stream_text(
*, delta: bool = False, debounce_by: float | None = 0.1
) -> AsyncIterator[str]
Stream the text result as an async iterable.
Note
Result validators will NOT be called on the text result if delta=True
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
delta
|
bool
|
if |
False
|
debounce_by
|
float | None
|
by how much (if at all) to debounce/group the response chunks by. |
0.1
|
Source code in pydantic_ai_slim/pydantic_ai/result.py
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
|
stream_structured
async
stream_structured(
*, debounce_by: float | None = 0.1
) -> AsyncIterator[tuple[ModelResponse, bool]]
Stream the response as an async iterable of Structured LLM Messages.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
debounce_by
|
float | None
|
by how much (if at all) to debounce/group the response chunks by. |
0.1
|
Returns:
Type | Description |
---|---|
AsyncIterator[tuple[ModelResponse, bool]]
|
An async iterable of the structured response message and whether that is the last message. |
Source code in pydantic_ai_slim/pydantic_ai/result.py
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
|
get_data
async
get_data() -> ResultDataT
Stream the whole response, validate and return it.
Source code in pydantic_ai_slim/pydantic_ai/result.py
328 329 330 331 332 333 334 335 336 337 338 |
|
usage
usage() -> Usage
Return the usage of the whole run.
Note
This won't return the full usage until the stream is finished.
Source code in pydantic_ai_slim/pydantic_ai/result.py
340 341 342 343 344 345 346 |
|
timestamp
timestamp() -> datetime
Get the timestamp of the response.
Source code in pydantic_ai_slim/pydantic_ai/result.py
348 349 350 |
|
validate_structured_result
async
validate_structured_result(
message: ModelResponse, *, allow_partial: bool = False
) -> ResultDataT
Validate a structured result message.
Source code in pydantic_ai_slim/pydantic_ai/result.py
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
|